CYANOnews Sep-Oct 2018 issue is out !

The September-October 2018 issue of CYANOnews is out !

It features, among others, an overview of the CyanoTracker project, open special issues related to cyano-research, new papers acknowledging CYANOCOST, job offers and forthcoming events.

You can download it here:

https://cyanocost.files.wordpress.com/2018/10/cyanonews-issue-10-sep-oct-2018.pdf

The next issue will come out in the end of November. You are welcome to send us any posts and info to be included in CYANOnews and in our media (website, facebook, twitter).

Looking forward to ICHA2018 in Nantes,

CYANOCOST

 

New cyanopeptolins with potential medical applications !

Abstract from a recent paper by Hanna Mazur-Marzec et al., published in Marine Drugs:

“Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg2) inhibited trypsin at low IC50 values (0.24–0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1–3.8 µM), while tyrosine-containing CPs (CPs-Tyr2) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.”

The work was carried out by researchers of  the University of Gdansk (Poland) and Robert Gordon University (Scotland, UK) and acknowledges CYANOCOST.

Reference (open access):

Mazur-Marzec, Hanna; Fidor, Anna; Cegłowska, Marta; Wieczerzak, Ewa; Kropidłowska, Magdalena; Goua, Marie; Macaskill, Jenny; Edwards, Christine (2018).  Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Marine Drugs 16(7) https://doi.org/10.3390/md16070220

 

Three papers published so far in “Marine Bacterial Toxins” Special Issue. Submissions still open !

Three papers have been published in the Marine Drugs Special Issue “Marine Bacterial Toxins”, that is edited by Prof. Hanna Mazur-Marzec and Dr. Anna Toruńska-Sitarz (University of Gdańsk).

You can have open access to the papers through the Special Issue website:
http://www.mdpi.com/journal/marinedrugs/special_issues/marine_bacterial_toxins

The call for submission of papers for this issue is still open. The submission deadline is 20 December 2018.You can contact the editors if you are planning to submit a paper.

Special Issue “Potentially Toxic Benthic Microorganisms in Freshwater and Marine Ecosystems”

Dr. Philipp Hess (Ifremer, France) and Dr. Jean-Francois Humbert (Sorbonne University, France) are editors of a Special Issue titled “Potentially Toxic Benthic Microorganisms in Freshwater and Marine Ecosystems”, in Toxins (MDPI). This special issue belongs to the section “Marine and Freshwater Toxins“.
The aim of the  Special Issue is to “gather the most recent research on benthic cyanobacteria and microalgae proliferating in marine and freshwater ecosystems and on their toxins. All papers dealing with the taxonomy, genetic diversity, ecology and toxicity of biofilms dominated by potentially-toxic cyanobacteria and microalgae and on risk assessment and management associated with such assemblages will be considered in this Special Issue.
The deadline for manuscript submissions is 31 August 2019, but papers will be published as soon as they are accepted following peer-review, i.e. well before the deadline and typically within 4-8 weeks from submission. 
Information about manuscript submission for this Special Issue can be found in the Issue’s webpage.
You can share this information with colleagues that may be interested to publish in this Special Issue.

Just published: ICTC10 Special Issue – Journal of Oceanology and Limnology.

The Special Issue of ICTC10 that was held in October 2016 in Wuhan, China is published in Journal of Oceanology and Limnology, Volume 36, Issue 4, July 2018. 

From the Preface article by R. Li, L. Song and P. Orr:

“The 10th nternational Conference on toxic cyanobacteria (ICTC-10) was successfully held during 23–28 Oct. 2016. We were so glad to see much progress made on toxic cyanobacteria and cyanotoxins during past years, and the ICTC does provide a global forum for a wide-ranging communication and discussion of key issues related to cyanobacterial blooms and cyanotoxins. This special issue “Cyanobacteria and cyanotoxins: responses and detection” in Journal of Oceanology and Limnology includes a collection of twelve papers focus on different topics and approaches on diversity, detection and physiological responses of cyanobacterial blooms and cyanotoxins.”

ICTC11 will be held in Krakow, Poland, on 5-10 May 2019.

Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature

Abstract from a recent paper by Lurling et al., published in Frontiers in Microbiology.

“Eutrophication (nutrient over-enrichment) is the primary worldwide water quality issue often leading to nuisance cyanobacterial blooms. Climate change is predicted to cause further rise of cyanobacteria blooms as cyanobacteria can have a competitive advantage at elevated temperatures. We tested the hypothesis that simultaneous rise in nutrients and temperature will promote cyanobacteria more than a single increase in one of the two drivers. To this end, controlled experiments were run with seston from 39 different urban water bodies varying in trophic state from mesotrophic to hypertrophic. These experiments were carried out at two different temperatures, 20°C (ambient) and 25°C (warming scenario) with or without the addition of a surplus of nutrients (eutrophication scenario). To facilitate comparisons, we quantified the effect size of the different treatments, using cyanobacterial and algal chlorophyll a concentrations as a response variable. Cyanobacterial and algal chlorophyll a concentrations were determined with a PHYTO-PAM phytoplankton analyzer. Warming caused an 18% increase in cyanobacterial chlorophyll-a, while algal chlorophyll-a concentrations were on average 8% higher at 25°C than at 20°C. A nutrient pulse had a much stronger effect on chlorophyll-a concentrations than warming. Cyanobacterial chlorophyll-a concentrations in nutrient enriched incubations at 20 or 25°C were similar and 9 times higher than in the incubations without nutrient pulse. Likewise, algal chlorophyll-a concentrations were 6 times higher. The results of this study confirm that warming alone yields marginally higher cyanobacteria chlorophyll-a concentrations, yet that a pulse of additional nutrients is boosting blooms. The responses of seston originating from mesotrophic waters seemed less strong than those from eutrophic waters, which indicates that nutrient control strategies –catchment as well as in-system measures– could increase the resilience of surface waters to the negative effects of climate change.”

Reference:

Lürling Miquel, Mello Mariana Mendes e, van Oosterhout Frank, de Senerpont Domis Lisette, Marinho Marcelo M. (2018). Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Frontiers in Microbiology 9, 1851. https://www.frontiersin.org/article/10.3389/fmicb.2018.01851

Algae blooms and climate change

A brief summary about the role of climate change on algae blooms written for the general public, is published by Climate Central.

“Algae occur naturally in most bodies of freshwater and saltwater. It’s normally fairly harmless, but the right combination of warm water, high nutrient levels, and adequate sunlight combined can cause a harmful algae bloom. These blooms can damage aquatic ecosystems by blocking sunlight and depleting oxygen that other organisms need to survive. Some algae, like red algae and blue-green algae, can produce toxins that damage the human nervous system and the liver (and they also stink — literally)………..”

Read the report here.

 

The Principle and Value of the European Multi Lake Survey

Abstract from a recent paper by E. Mantzouki & B. Ibelings, published in  Limnology & Oceanography Bulletin  (ASLO):

On‐going global warming and eutrophication are expected to promote cyanobacterial dominance worldwide. Although increased lake temperature and nutrients are well‐established drivers of blooms, the mechanisms that determine cyanobacterial biomass are complex, with potentially direct, indirect, and interactive effects. Cyanobacteria can produce toxins that constitute a considerable risk for animal and human health and thus a substantial economic cost if we are to ensure safe drinking water. Such global range phenomena should be studied at a wide spatial scale, to directly compare phytoplankton response in different lake types across contrasting climatic zones. The European Multi Lake Survey (EMLS) sought to harness the power of group science in order to sample lakes across Europe and disentangle the effect of environmental stressors on potentially toxic cyanobacterial blooms. The first EMLS results showed that the distribution of cyanobacterial toxins and the toxic potential in lakes will be highly dependent on direct and indirect effects of temperature. If nutrients are not regulated, then they may interact synergistically with increased lake temperatures to promote cyanobacterial growth more than that of other phytoplankton taxa. Providing continental scale evidence is highly significant for the development of robust models that could predict cyanobacterial or algal response to environmental change.

Reference:

Mantzouki, E. and Ibelings, B. W. (2018), The Principle and Value of the European Multi Lake Survey. Limnology and Oceanography Bulletin. . doi:10.1002/lob.10259