Like scuba diving and sponge biology ? Three PhD candidates in sponge biology / coral reef ecology at UvA

The Institute for Biodiversity and Ecosystem Dynamics is looking for 3 excellent PhD candidates in sponge biology / coral reef ecology to join our team.

EU ERC Starting Grant: SPONGE ENGINE — Fast and efficient sponge engines drive and modulate the food web of reef ecosystems

Coral reefs are iconic examples of biological hotspots, highly appreciated because of their ecosystem services. Yet, they are threatened by human impact and climate change, highlighting the need to develop tools and strategies to curtail changes in these ecosystems. Remarkably, ever since Darwin’s descriptions of coral reefs, it has been a mystery how one of Earth’s most productive and diverse ecosystems thrives in oligotrophic seas, as an oasis in a marine desert. Our team recently discovered the ‘sponge loop’ pathway (De Goeij et al. Science 2013) that efficiently retains and transfers energy and nutrients on the reef. We recognized sponges as potential (and so far neglected) key ecosystem drivers, and accumulated evidence on sponge loops in other ecosystems, such as deep-sea coral reefs. As a result, current reef food web models, lacking sponge-driven resource cycling, are incomplete and need to be redeveloped. However, mechanisms that determine the capacity of sponge ‘engines’, how they are fuelled, and drive communities are unknown.

The aim of this ERC project is to systematically establish the novel reef food web framework, integrating sponges as key ecosystem drivers. To this end, sponges will be evaluated on functional traits (morphology, associated microbes, pumping rate) in the processing of dissolved food, the main fuel of the engine. At the community level, we will assess to what extent these different traits are a driving force in structuring reef ecosystems, from fuel input (primary producers) to engine output (driving and modulating the consumer food web). This framework derived from a Caribbean reef ecosystem will then be implemented in a sponge-driven food web model, a much-needed foundation to test and predict future scenarios of changes in reef communities. Ultimately, we will test and generalize the novel food web framework at a tropical Indo-Pacific, a temperate Mediterranean, and a cold-water North-Atlantic reef.

See details for those positions in the Euraxess page.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s